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It is known that, in the order-parameter space S2 /Z2 �a typical example being a uniaxial nematic liquid
crystal in three dimensions�, a −1 /2 wedge disclination line and a +1 /2 one are topologically equivalent and
can thus be transformed continuously into each other. Here we report the realization of this transformation in
a simulation of a cholesteric blue phase under an electric field.
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Topological defects, found in systems with broken con-
tinuous symmetry, can be classified by homotopy groups
�1–3�. In the case of a uniaxial nematic liquid crystal whose
director rotation is confined in two dimensions �2Ds�, the
order-parameter space is S1 /Z2. Its first homotopy group is
�1�S1 /Z2�=Z, and due to the equivalence of the head and the
tail of the director �or that of n and −n�, a topological charge
of integer or half integer, m /2, can be assigned to each de-
fect. The director n rotates by an angle �m /2�2� along a
contour encircling the defect. In a three-dimensional �3D�
system, a topological defect line perpendicular to the plane
confining the rotation of n is referred to as a wedge discli-
nation �3�.

On the other hand, when the constraint of 2D is released,
the order-parameter space is now S2 /Z2, and its first homo-
topy group is �1�S2 /Z2�=Z2��0,1�. It dictates that there is
only one class of topologically stable disclinations in a 3D
uniaxial nematic liquid crystal. A wedge disclination line
with topological charge −1 /2 is in fact equivalent to one
with +1 /2 charge. As first pointed out in a clear manner in
�2�, and schematically shown in Fig. 1, the former can be
transformed into the latter continuously via a twist disclina-
tion �3�. Along the contour encircling a twist disclination, n
rotates, by an angle �, out of the plane containing the con-
tour.

In spite of the clarity of the above topological argument,
to our knowledge a continuous transformation between −1 /2
and +1 /2 wedge disclinations has been realized neither in
experiments nor in computer simulations. This may be one of
the reasons why the topological equivalence of wedge discli-
nations with positive/negative half-integer charge has not
been given much attention. In the present Rapid Communi-
cation, we report the observation of this transformation in a
simulation of a cholesteric blue phase �BP� under an applied
electric field. Cholesteric blue phases �4,5� have been known
as an intriguing example of liquid crystalline ordered struc-
tures involving topological defects. It is now established that
cholesteric blue phases contain a network of disclination
lines of topological charge −1 /2, with cubic symmetry in BP
I and II. Their response to an electric field has also been
extensively studied �6�, with focus on the changes in the
symmetry of the ordered phases and the dimension of the

unit cell. Recently several numerical studies �7,8� demon-
strated various types of possible structural changes under an
electric field. One of the main interests of those numerical
studies is the dynamics of disclination lines, which is diffi-
cult to access experimentally. We carried out an extensive
study to show that the structural change of disclination lines
sensitively depends on the direction of the electric field and
the sign of dielectric anisotropy ��a� �8�. Here we focus on
the change in the director profile of BP I with negative �a
under an electric field parallel to one body diagonal of the
cubic unit cell to see the change in the topology of disclina-
tion lines.

The details of the numerical calculation are presented in
Ref. �8�, and here we repeat only the essential part. The
orientational order of a liquid crystal is specified by a
second-rank tensor. After an appropriate rescaling �8,4�
of the order-parameter ���, length �rescaled pitch of a
uniaxial cholesteric helix is set to 4��, and relevant mate-
rial parameters, the rescaled free-energy density in terms of

��� is written as �=�local�����+�grad���� , �̃�+�E���� ,E�,
where �local�����=� Tr �2−�6 Tr �3+ �Tr �2�2 is the local
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FIG. 1. �Color online� Schematic illustration of the topological
equivalence of −1 /2 and +1 /2 wedge disclinations. Here the direc-
tor n is indicated by a cylinder and the disclination by a sphere. By
a rotation of n about an axis indicated in the figure, a −1 /2 discli-
nation transforms continuously into a +1 /2 disclination via a twist
disclination.
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freeenergy in the Landau–de Gennes expansion, and

�grad���� , �̃�=�2����̃	����+����2+
���̃ ·����2� is the free
energy due to the spatial variation of ���. Here � and � are
the rescaled temperature and chirality, respectively, and we
choose �=−1 and �=0.7. The parameter 
 characterizes the
anisotropy of elasticity, and here we set 
=1 �one-constant
approximation�. We have checked �8� that with the choice of
these parameters BP I is indeed the most stable phase under
no electric field. The free energy due to the electric field
reads as �E���� ,E�=−�̃ê�ê����, where a unit vector ê speci-
fies the field direction, the rescaled parameter �̃ is propor-
tional to the square of the field strength, and its sign is the
same as that of �a. In the present study we choose ê 	 �111�,
one body diagonal of the unit cell, and �̃=−1, corresponding
to the field strength E
20 V /�m �8,9�. The relaxation of
��� is governed by a simple relaxation equation via rota-
tional diffusion. We also let the shape and size of the simu-
lation box relax for the system to approach true equilibrium
without suffering from the mismatch between the system size
and the characteristic size of the equilibrium structure. The
details can be found in �8�, and we merely notice that the
rescaled time t is measured in units of a characteristic time
���1 �s proportional to rotational viscosity. Our calcula-
tions are carried out on a 32	32	32 parallelepiped lattice
with periodic boundary conditions. For clarity, the visualiza-
tions in the following are not restricted to the unit cell of our
numerical systems. Their inherent periodicity reflects the pe-
riodic boundaries of our system.

In Figs. 2–4, we show the time evolution of the director
profile under an electric field E. We show the director profile
at a cross section perpendicular to E, and the simulation is
started from the equilibrium bulk BP I under no field �Fig. 2�.
Note that the distance of the viewpoint from the cross section
is fixed throughout Figs. 2–4. Therefore the change in the
distance between disclinations reflects its actual change.

In the equilibrium structure of BP I, all of the disclination
lines, which do not intersect each other, are wedge disclina-
tions with topological charge −1 /2 as shown in Fig. 2. After
the application of E, the local director profile around discli-
nation lines parallel to E �for example, one at the center of
Fig. 2� stays unchanged because the director in the vicinity
of such disclinations experiences no torque from E. How-
ever, a close inspection of the director profile around a dis-
clination line oblique to E in Fig. 3 reveals that the −1 /2
wedge disclination before the application of E is transformed
to a twist disclination �the director rotates by an angle � out
of the plane along the contour encircling it� as shown sepa-
rately in a magnified manner in Fig. 3; the torque exerted by
E in this case can rotate the director. After further elapse of
time, in Fig. 4, we see a regular parallel array of −1 /2 and
+1 /2 wedge disclinations �perpendicular to the plane of the
figure� with a hexagonal order significantly different from
the original BP I cubic structure �10�. The sequence of Figs.
2–4 clearly demonstrates that some of the wedge disclination
lines of topological charge −1 /2 in the initial bulk structure
of BP I have been transformed into +1 /2 ones continuously
via a twist disclination. To show the continuous nature of the
transformation in a different manner, we give in Fig. 5 the
director variations along the contours in Figs. 2–4 encircling

the identical disclination. The director variations are pre-
sented as a contour on a unit sphere representing the order-
parameter space of the director. The time evolution of the
contours indicates that the transformation is indeed a con-
tinuous one. From Fig. 5, one can also see clearly that the
final profile �Fig. 4� is that of a +1 /2 disclination �11�.

The inevitability of the change in the charge from −1 /2 to
+1 /2 can be understood by a simple topological argument.

FIG. 2. �Color online� The director profile at a cross section at
t=0, just after the application of the electric field E perpendicular to
the plane of the figure. The director is shown by a cylinder, and the
curved surfaces �green� are the isosurfaces with Tr Q2=0.7, indicat-
ing the position of disclination lines. The isosurfaces are shown
only in a region sandwiched by two planes whose distance from the
cross section is �3 /6. The location of the cross section with respect
to the unit cell of BP I is shown by a gray plane in the inset. To
clarify that all the disclination lines are of topological charge −1 /2,
we also show the director profiles around two disclination lines at a
different cross section perpendicular to the disclination line. The
circle �red� indicates the contour along which the director variation
is shown in Fig. 5.

FIG. 3. �Color online� The director profile at t=18.9. The local
director profile around one disclination line is shown separately to
emphasize that it is a twist disclination.
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Since the dielectric anisotropy �a is negative and the field is
strong, the electric field forces the director n to lie in a 2D
plane perpendicular to it. In the 2D plane, as mentioned at
the beginning of this Rapid Communication, a topological
defect is characterized by its charge of half integer, and de-
fects with different charges cannot be transformed inter-
changeably by a continuous process. Moreover, the net topo-
logical charge must be zero because we deal with an infinite
system with periodic boundaries. Therefore, as noted in Fig.
4, if −1 /2 defects exist in the 2D plane, there must be as
many +1 /2 defects, which is why some of the −1 /2 defects
are forced to transform to +1 /2 ones. Recall that the above
argument does not hold in 3D; the presence of −1 /2 discli-
nation lines without the compensation by +1 /2 ones in the
initial cholesteric blue phase does not break any topological
rules.

Finally we comment that chirality does not play an impor-
tant role in the dynamical process of the transformation of
disclination lines; we have just utilized a blue phase of a
chiral liquid crystal as an initial system containing disclina-
tion lines. Indeed, chirality is irrelevant to topological argu-
ments so long as cholesteric planes play no role as in the
present case. Therefore the transformation shown here can
occur in an achiral nematic liquid crystal. Our observation
demonstrates that a field oblique to a disclination line can
induce the transformation when �a is negative; that is, the
field can exert a torque to the director n and restricts n to a
2D plane perpendicular to it. Therefore this transformation is

expected to be observed experimentally in a simple setup of
a nematic cell. We believe that we have presented an inter-
esting numerical realization of a transformation of topologi-
cal defects and thus hope that the present study will promote
further experimental or numerical studies concerning the to-
pological nature of liquid crystals in a different way from
previous work.
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FIG. 4. �Color online� The director profile at t=38.5. In this
region three disclination lines of charge +1 /2 and five ones of
charge −1 /2, which are almost perpendicular to the cross section,
can be seen. The number of +1 /2 disclination is the same as that of
−1 /2 disclination in the infinite system not shown here.
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FIG. 5. �Color online� The director variations along the counter-
clockwise contours in Figs. 2–4, shown as a contour on a unit
sphere. Two figures from different viewpoints are presented for
clarity. The starting point of the contour of the director is shown by
a small sphere. The plane of Figs. 2–4, or the xy plane, is presented
by a black circle, and the axis perpendicular to the xy plane, or the
z axis, is indicated by a straight line. The direction of the horizontal
axis of Figs. 2–4, or the x axis, is shown by a short line. The figure
below is drawn from the +z point as in Figs. 2–4, and the z axis
cannot be seen. This illustration follows the idea of Fig. 12.15 in
�3�.
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�8� J. Fukuda, M. Yoneya, and H. Yokoyama, Phys. Rev. E 80,
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�9� In Ref. �8�, we showed that with other choices of the field
direction ��100� and �110��, disclination lines eventually anni-
hilate to result in a helical �cholesteric� state without disclina-
tions. We also note that for positive �a, the final director profile
is a uniform one parallel to E without disclination, irrespective
of the field direction. This is the reason why in the present
study we concentrate on the case with negative �a and the field
along �111�, where annihilation of disclination is not observed
�see �10� below�.

�10� We should mention that this regular array of −1 /2 and +1 /2
disclination lines must be regarded as a transient, not a stable,

state. The ground state under E is a helical state with its pitch
axis parallel to E. In simulations in the present Rapid Commu-
nication and �8�, we could not observe a helical state as a final
structure, possibly due to the perfectness of the prepared initial
condition; threefold symmetry of the defect array �Fig. 4� re-
mains unchanged, though a gradual increase of the defect dis-
tance is observed. A small perturbation would be necessary for
the system to reach a helical state.

�11� It is not clear enough from Fig. 5 that the initial profile �Fig. 2�
is that of a −1 /2 disclination. It is because the plane of the
contour �the plane of Fig. 2� is not perpendicular to the discli-
nation line.
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